Quantcast
Channel: Hacker News
Viewing all articles
Browse latest Browse all 25817

GPUs Are Now Available for Google Compute Engine and Cloud Machine Learning

$
0
0

Supercharge machine learning

The new Google Cloud GPUs are tightly integrated with Google Cloud Machine Learning (Cloud ML), helping you slash the time it takes to train machine learning models at scale using the TensorFlow framework. Now, instead of taking several days to train an image classifier on a large image dataset on a single machine, you can run distributed training with multiple GPU workers on Cloud ML, dramatically shorten your development cycle and iterate quickly on the model.

Cloud ML is a fully-managed service that provides end-to-end training and prediction workflow with cloud computing tools such as Google Cloud Dataflow, Google BigQuery, Google Cloud Storage and Google Cloud Datalab.

Start small and train a TensorFlow model locally on a small dataset. Then, kick off a larger Cloud ML training job against a full dataset in the cloud to take advantage of the scale and performance of Google Cloud GPUs. For more on Cloud ML, please see the Quickstart guide to get started, or this document to dive into using GPUs.

Next steps

Register for Cloud NEXT, sign up for the CloudML Bootcamp and learn how to Supercharge performance using GPUs in the cloud. You can use the gcloud command-line to create a VM today and start experimenting with TensorFlow-accelerated machine learning. Detailed documentation is available on our website.

Viewing all articles
Browse latest Browse all 25817

Trending Articles