Quantcast
Channel: Hacker News
Viewing all articles
Browse latest Browse all 25817

Radio Bursts Traced to Faraway Galaxy, but Caller Is Probably ‘Ordinary Physics’

$
0
0

More recently, searches for radio signals from a set of stars with anomalous spectral features and another star known as Tabby’s Star that has shown suspicious variations in its light seem to have come up empty.

So at least for now, the skies appear to be bereft of intelligence. But the new results from the fast radio burster, known as 121102 — after Nov. 2, 2012, the date it was first observed — need not discourage any aficionados of cosmic mystery.

Most likely, Dr. Chatterjee said in a telephone interview, the bursts could be caused by weird reactions between a neutron star — the dense spinning magnet left behind by a supernova explosion — and the debris from that explosion. Or perhaps from some unexpected quirk of a supermassive black hole in the center of the galaxy, a dwarf assemblage of stars some three billion light-years away in the constellation Auriga.

Photo
A composite image of FRB 121102, which astronomers identified as the source of bursts of radio waves.Credit Gemini Observatory/AURA/NRC

There are problems with both explanations, however, he added.

Fast radio bursts have led astronomers on a merry chase ever since they were discovered in 2007 in data recorded earlier by the Parkes radio telescope in Australia.

Because they are so short and until recently have never been seen to repeat, these phantoms have been hard for astronomers to study. Usually, astronomers notice them after the fact. Moreover, radio telescopes have poor angular resolution, making it impossible to determine exactly what star or distant galaxy they came from.

The radio emissions themselves, Dr. Chatterjee said, resemble the blasts from pulsars — the spinning neutron stars that emit clocklike pulses of radiation and whose discovery in 1968 did indeed elicit speculation about little green men. But the radio waves arrive on Earth dispersed or spread out in time by wavelength, which implies that they have traveled from far outside our galaxy.

That great distance also implies that they are enormously more powerful than pulsars in our galaxy, adding to the mystery of what they are and raising the question of why they are not seen within our own galaxy, the Milky Way.

In all, 18 of the fast bursters have been spotted since they were first recognized in 2007 — a small number. If extrapolated to the whole sky, that means 5,000 to 10,000 of these flashes should happen every day. Where are they?

Lacking much evidence to the contrary, astronomers theorized that the bursts resulted from apocalyptic events like collisions of neutron stars. At one point, Dr. Chatterjee said, there were more theoretical models of the bursts than observed bursts. “Many things go bang,” he explained.

The big break came in 2012 when the burst known as 121102 repeated itself. Subsequent observing campaigns with the Very Large Array of telescopes in New Mexico and the Arecibo radio telescope in Puerto Rico recorded a total of nine bursts over 83 hours of observing time and a terabyte of data during a six-month period in 2016.

Welcome to the place of no return — a region in space where the gravitational pull is so strong that not even light can escape it. This is a black hole.

That meant that whatever was causing 121102, at least, was not destroying it. “We definitely know, for this one case anyway, the radio burst is not cataclysmic,” Dr. Chatterjee said.

In addition, papers also have been submitted to the Astrophysical Journal Letters by two other groups led by Shriharsh Tendulkar of McGill University and by Benito Marcote of the Joint Institute for VLBI in Europe, in Dwingeloo, the Netherlands.

Following up on the Very Large Array observations, Dr. Marcote’s team on the European VLBI network was able to pinpoint the location of the burst to a faint dwarf galaxy in the Auriga constellation. Dr. Tendulkar and his colleagues then used the eight-meter Gemini North telescope on Mauna Kea in Hawaii to observe the galaxy and measure its distance.

That distance, three billion light-years, confirmed the original supposition that the fast bursts come from far, far away. “The host galaxy is puny,” Dr. Tendulkar said during the news conference in Grapevine. That dwarf galaxy is only a hundredth of the mass of the Milky Way.

If this burster, 121102, is indeed typical of the bunch, the astronomers said, this might be a clue.

Such galaxies are typically home to some of the most violent events in the universe, Dr. Chatterjee said, things that go seriously boom in the night like certain kinds of gamma-ray bursts and superluminous supernova explosions that result in extremely magnetic pulsars known as magnetars. These are the signatures of massive stars, of the deaths of massive stars, he said.

But this only raises more questions.

“The only one that repeats is from three billion light-years,” Dr. Chatterjee mused.

“Where are all the nearby ones?” he asked, noting that they should be even brighter, saturating our radio receivers.

“It’s very curious,” he said.

Correction: January 4, 2017

An earlier version of this article misstated the frequency with which a series of radio wave bursts may be occurring, if extrapolated over the whole sky. It is estimated that 5,000 to 10,000 of these flashes should happen every day, not every year.

Continue reading the main story

Viewing all articles
Browse latest Browse all 25817

Trending Articles