README.md
Yam Peleg, Valerio Maggio
- Introduce main features of Keras
- Learn how simple and Pythonic is doing Deep Learning with Keras
- Understand how easy is to do basic and advanced DL models in Keras;
- Examples and Hand-on Excerises along the way.
Source
https://github.com/leriomaggio/deep-learning-keras-euroscipy2016/
Attention: Spoilers Warning!
Setup (
10 mins
)Part I: Introduction (
~65 mins
)Intro to ANN (
~20 mins
)- naive pure-Python implementation
- fast forward, sgd, backprop
Intro to Theano (
15 mins
)Introduction to Keras (
30 mins
)- Overview and main features
- Theano backend
- Tensorflow backend
- Multi-Layer Perceptron and Fully Connected
- Examples with
keras.models.Sequential
andDense
- HandsOn: MLP with keras
- Examples with
- Overview and main features
Coffe Break (
30 mins
)Part II: Supervised Learning and Convolutional Neural Nets (
~45 mins
)Intro: Focus on Image Classification (
5 mins
)Intro to CNN (
25 mins
)- meaning of convolutional filters
- Meaning of dimensions of Conv filters (through an exmple of ConvNet)
- Visualising ConvNets
- HandsOn: ConvNet with keras
Advanced CNN (
10 mins
)- Dropout
- MaxPooling
- Batch Normalisation
Famous Models in Keras (likely moved somewhere else) (
10 mins
) (ref: https://github.com/fchollet/deep-learning-models) - VGG16 - VGG19 - ResNet50 - Inception v3- HandsOn: Fine tuning a network on new dataset
Part III: Unsupervised Learning (
10 mins
)- AutoEncoders (
5 mins
) - word2vec & doc2vec (gensim) &
keras.datasets
(5 mins
)Embedding
- word2vec and CNN
- Exercises
- AutoEncoders (
Part IV: Advanced Materials (
20 mins
)- RNN and LSTM (
10 mins
) - Example of RNN and LSTM with Text (
~10 mins
) -- Tentative - HandsOn: IMDB
- RNN and LSTM (
Wrap up and Conclusions (
5 mins
)
This tutorial requires the following packages:
(Optional but recommended):
The easiest way to get (most) these is to use an all-in-one installer such as Anaconda from Continuum. These are available for multiple architectures.
Python Version
I'm currently running this tutorial with Python 3 on Anaconda
Python 3.5.2
The quickest and simplest way to setup the environment is to use conda environment manager.
We provide in the materials a deep-learning.yml
that is complete and ready to use to set up your virtual environment with conda.
name: deep-learning
channels:
- conda-forge
- defaults
dependencies:
- accelerate=2.3.0=np111py35_3
- accelerate_cudalib=2.0=0
- bokeh=0.12.1=py35_0
- cffi=1.6.0=py35_0
- backports.shutil_get_terminal_size=1.0.0=py35_0
- blas=1.1=openblas
- ca-certificates=2016.8.2=3
- cairo=1.12.18=8
- certifi=2016.8.2=py35_0
- cycler=0.10.0=py35_0
- cython=0.24.1=py35_0
- decorator=4.0.10=py35_0
- entrypoints=0.2.2=py35_0
- fontconfig=2.11.1=3
- freetype=2.6.3=1
- gettext=0.19.7=1
- glib=2.48.0=4
- h5py=2.6.0=np111py35_6
- harfbuzz=1.0.6=0
- hdf5=1.8.17=2
- icu=56.1=4
- ipykernel=4.3.1=py35_1
- ipython=5.1.0=py35_0
- ipywidgets=5.2.2=py35_0
- jinja2=2.8=py35_1
- jpeg=9b=0
- jsonschema=2.5.1=py35_0
- jupyter_client=4.3.0=py35_0
- jupyter_console=5.0.0=py35_0
- jupyter_core=4.1.1=py35_1
- libffi=3.2.1=2
- libiconv=1.14=3
- libpng=1.6.24=0
- libsodium=1.0.10=0
- libtiff=4.0.6=6
- libxml2=2.9.4=0
- markupsafe=0.23=py35_0
- matplotlib=1.5.2=np111py35_6
- mistune=0.7.3=py35_0
- nbconvert=4.2.0=py35_0
- nbformat=4.0.1=py35_0
- ncurses=5.9=8
- nose=1.3.7=py35_1
- notebook=4.2.2=py35_0
- numpy=1.11.1=py35_blas_openblas_201
- openblas=0.2.18=4
- openssl=1.0.2h=2
- pandas=0.18.1=np111py35_1
- pango=1.40.1=0
- path.py=8.2.1=py35_0
- pcre=8.38=1
- pexpect=4.2.0=py35_1
- pickleshare=0.7.3=py35_0
- pip=8.1.2=py35_0
- pixman=0.32.6=0
- prompt_toolkit=1.0.6=py35_0
- protobuf=3.0.0b3=py35_1
- ptyprocess=0.5.1=py35_0
- pygments=2.1.3=py35_1
- pyparsing=2.1.7=py35_0
- python=3.5.2=2
- python-dateutil=2.5.3=py35_0
- pytz=2016.6.1=py35_0
- pyyaml=3.11=py35_0
- pyzmq=15.4.0=py35_0
- qt=4.8.7=0
- qtconsole=4.2.1=py35_0
- readline=6.2=0
- requests=2.11.0=py35_0
- scikit-learn=0.17.1=np111py35_blas_openblas_201
- scipy=0.18.0=np111py35_blas_openblas_201
- setuptools=25.1.6=py35_0
- simplegeneric=0.8.1=py35_0
- sip=4.18=py35_0
- six=1.10.0=py35_0
- sqlite=3.13.0=1
- terminado=0.6=py35_0
- tk=8.5.19=0
- tornado=4.4.1=py35_1
- traitlets=4.2.2=py35_0
- wcwidth=0.1.7=py35_0
- wheel=0.29.0=py35_0
- widgetsnbextension=1.2.6=py35_3
- xz=5.2.2=0
- yaml=0.1.6=0
- zeromq=4.1.5=0
- zlib=1.2.8=3
- cudatoolkit=7.5=0
- ipython_genutils=0.1.0=py35_0
- jupyter=1.0.0=py35_3
- libgfortran=3.0.0=1
- llvmlite=0.11.0=py35_0
- mkl=11.3.3=0
- mkl-service=1.1.2=py35_2
- numba=0.26.0=np111py35_0
- pycparser=2.14=py35_1
- pyqt=4.11.4=py35_4
- snakeviz=0.4.1=py35_0
- pip:
- backports.shutil-get-terminal-size==1.0.0
- certifi==2016.8.2
- cycler==0.10.0
- cython==0.24.1
- decorator==4.0.10
- h5py==2.6.0
- ipykernel==4.3.1
- ipython==5.1.0
- ipython-genutils==0.1.0
- ipywidgets==5.2.2
- jinja2==2.8
- jsonschema==2.5.1
- jupyter-client==4.3.0
- jupyter-console==5.0.0
- jupyter-core==4.1.1
- keras==1.0.7
- mako==1.0.4
- markupsafe==0.23
- matplotlib==1.5.2
- mistune==0.7.3
- nbconvert==4.2.0
- nbformat==4.0.1
- nose==1.3.7
- notebook==4.2.2
- numpy==1.11.1
- pandas==0.18.1
- path.py==8.2.1
- pexpect==4.2.0
- pickleshare==0.7.3
- pip==8.1.2
- prompt-toolkit==1.0.6
- protobuf==3.0.0b2
- ptyprocess==0.5.1
- pygments==2.1.3
- pygpu==0.2.1
- pyparsing==2.1.7
- python-dateutil==2.5.3
- pytz==2016.6.1
- pyyaml==3.11
- pyzmq==15.4.0
- qtconsole==4.2.1
- requests==2.11.0
- scikit-learn==0.17.1
- scipy==0.18.0
- setuptools==25.1.4
- simplegeneric==0.8.1
- six==1.10.0
- tensorflow==0.10.0rc0
- terminado==0.6
- theano==0.8.2
- tornado==4.4.1
- traitlets==4.2.2
- wcwidth==0.1.7
- wheel==0.29.0
- widgetsnbextension==1.2.6
prefix: /home/valerio/anaconda3/envs/deep-learning
A. Create the Environment
conda create env -f deep-learning.yml # this file is for Linux channels.
If you're using a Mac OSX, we also provided in the repo the conda file
that is compatible with osx-channels
:
conda create env -f deep-learning-osx.yml # this file is for OSX channels.
deep-learning
Environment
B. Activate the new source activate deep-learning
Optionals
1. Enabling Conda-Forge
It is strongly suggested to enable conda forge in your Anaconda installation.
Conda-Forge is a github organisation containing repositories of conda recipies.
To add conda-forge
as an additional anaconda channel it is just required to type:
conda config --add channels conda-forge
2. Configure Theano
1) Create the theanorc
file:
2) Copy the following content into the file:
[global]
floatX = float32
device = gpu # switch to cpu if no GPU is available on your machine
[nvcc]
fastmath = True
[lib]
cnmem=.90
More on theano documentation
3. Installing Tensorflow as backend
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp35-cp35m-linux_x86_64.whl
pip install --ignore-installed --upgrade $TF_BINARY_URL
More on tensorflow documentation
1. Check import
import numpy as npimport scipy as spimport pandas as pdimport matplotlib.pyplot as pltimport sklearn
Using Theano backend.
Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007)
2. Check installeded Versions
import numpyprint('numpy:', numpy.__version__)import scipyprint('scipy:', scipy.__version__)import matplotlibprint('matplotlib:', matplotlib.__version__)import IPythonprint('iPython:', IPython.__version__)import sklearnprint('scikit-learn:', sklearn.__version__)
numpy: 1.11.1
scipy: 0.18.0
matplotlib: 1.5.2
iPython: 5.1.0
scikit-learn: 0.17.1
import kerasprint('keras: ', keras.__version__)import theanoprint('Theano: ', theano.__version__)# optionalimport tensorflow as tfprint('Tensorflow: ', tf.__version__)
keras: 1.0.7
Theano: 0.8.2
Tensorflow: 0.10.0rc0
You have two options to go through the material presented in this tutorial:
- Read (and execute) the material as iPython/Jupyter notebooks
- (just) read the material as (HTML) slides
In the first case, all you need to do is just execute ipython notebook
(or jupyter notebook
) depending on the version of iPython
you have installed on your machine
(jupyter
command works in case you have iPython 4.0.x
installed)
In the second case, you may simply convert the provided notebooks in HTML
slides and see them into your browser
thanks to nbconvert
.
Thus, move to the folder where notebooks are stored and execute the following command:
jupyter nbconvert --to slides ./*.ipynb --post serve
(Please substitute jupyter
with ipython
in the previous command if you have iPython 3.x
installed on your machine)
In case...
..you wanna do both (interactive and executable slides), I highly suggest to install the terrific RISE
ipython notebook extension: https://github.com/damianavila/RISE