Figures from the United States Department of Agriculture show herbicide use skyrocketing in soybeans, a leading G.M. crop, growing by two and a half times in the last two decades, at a time when planted acreage of the crop grew by less than a third. Use in corn was trending downward even before the introduction of G.M. crops, but then nearly doubled from 2002 to 2010, before leveling off. Weed resistance problems in such crops have pushed overall usage up.
To some, this outcome was predictable. The whole point of engineering bug-resistant plants “was to reduce insecticide use, and it did,” said Joseph Kovach, a retired Ohio State University researcher who studied the environmental risks of pesticides. But the goal of herbicide-resistant seeds was to “sell more product,” he said — more herbicide.
Farmers with crops overcome by weeds, or a particular pest or disease, can understandably be G.M. evangelists. “It’s silly bordering on ridiculous to turn our backs on a technology that has so much to offer,” said Duane Grant, the chairman of the Amalgamated Sugar Company, a cooperative of more than 750 sugar beet farmers in the Northwest.
He says crops resistant to Roundup, Monsanto’s most popular weedkiller, saved his cooperative.
But weeds are becoming resistant to Roundup around the world — creating an opening for the industry to sell more seeds and more pesticides. The latest seeds have been engineered for resistance to two weedkillers, with resistance to as many as five planned. That will also make it easier for farmers battling resistant weeds to spray a widening array of poisons sold by the same companies.
Growing resistance to Roundup is also reviving old, and contentious, chemicals. One is 2,4-D, an ingredient in Agent Orange, the infamous Vietnam War defoliant. Its potential risks have long divided scientists and have alarmed advocacy groups.
Another is dicamba. In Louisiana, Monsanto is spending nearly $1 billion to begin production of the chemical there. And even though Monsanto’s version is not yet approved for use, the company is already selling seeds that are resistant to it — leading to reports that some farmers are damaging neighbors’ crops by illegally spraying older versions of the toxin.
High-Tech Kernels
Two farmers, 4,000 miles apart, recently showed a visitor their corn seeds. The farmers, Bo Stone and Arnaud Rousseau, are sixth-generation tillers of the land. Both use seeds made by DuPont, the giant chemical company that is merging with Dow Chemical.
To the naked eye, the seeds looked identical. Inside, the differences are profound.
In Rowland, N.C., near the South Carolina border, Mr. Stone’s seeds brim with genetically modified traits. They contain Roundup Ready, a Monsanto-made trait resistant to Roundup, as well as a gene made by Bayer that makes crops impervious to a second herbicide. A trait called Herculex I was developed by Dow and Pioneer, now part of DuPont, and attacks the guts of insect larvae. So does YieldGard, made by Monsanto.
Another big difference: the price tag. Mr. Rousseau’s seeds cost about $85 for a 50,000-seed bag. Mr. Stone spends roughly $153 for the same amount of biotech seeds.
For farmers, doing without genetically modified crops is not a simple choice. Genetic traits are not sold à la carte.
Mr. Stone, 45, has a master’s degree in agriculture and listens to Prime Country radio in his Ford pickup. He has a test field where he tries out new seeds, looking for characteristics that he particularly values — like plants that stand well, without support.
“I’m choosing on yield capabilities and plant characteristics more than I am on G.M.O. traits” like bug and poison resistance, he said, underscoring a crucial point: Yield is still driven by breeding plants to bring out desirable traits, as it has been for thousands of years.
That said, Mr. Stone values genetic modifications to reduce his insecticide use (though he would welcome help with stink bugs, a troublesome pest for many farmers). And Roundup resistance in pigweed has emerged as a problem.
“No G.M. trait for us is a silver bullet,” he said.
By contrast, at Mr. Rousseau’s farm in Trocy-en-Multien, a village outside Paris, his corn has none of this engineering because the European Union bans most crops like these.
“The door is closed,” says Mr. Rousseau, 42, who is vice president of one of France’s many agricultural unions. His 840-acre farm was a site of World War I carnage in the Battle of the Marne.
As with Mr. Stone, Mr. Rousseau’s yields have been increasing, though they go up and down depending on the year. Farm technology has also been transformative. “My grandfather had horses and cattle for cropping,” Mr. Rousseau said. “I’ve got tractors with motors.”
He wants access to the same technologies as his competitors across the Atlantic, and thinks G.M. crops could save time and money.
“Seen from Europe, when you speak with American farmers or Canadian farmers, we’ve got the feeling that it’s easier,” Mr. Rousseau said. “Maybe it’s not right. I don’t know, but it’s our feeling.”
Feeding the World
With the world’s population expected to reach nearly 10 billion by 2050, Monsanto has long held out its products as a way “to help meet the food demands of these added billions,” as it said in a 1995 statement. That remains an industry mantra.
“It’s absolutely key that we keep innovating,” said Kurt Boudonck, who manages Bayer’s sprawling North Carolina greenhouses. “With the current production practices, we are not going to be able to feed that amount of people.”
But a broad yield advantage has not emerged. The Times looked at regional data from the United Nations Food and Agriculture Organization, comparing main genetically modified crops in the United States and Canada with varieties grown in Western Europe, a grouping used by the agency that comprises seven nations, including the two largest agricultural producers, France and Germany.
For rapeseed, a variant of which is used to produce canola oil, The Times compared Western Europe with Canada, the largest producer, over three decades, including a period well before the introduction of genetically modified crops.
Despite rejecting genetically modified crops, Western Europe maintained a lead over Canada in yields. While that is partly because different varieties are grown in the two regions, the trend lines in the relative yields have not shifted in Canada’s favor since the introduction of G.M. crops, the data shows.
For corn, The Times compared the United States with Western Europe. Over three decades, the trend lines between the two barely deviate. And sugar beets, a major source of sugar, have shown stronger yield growth recently in Western Europe than the United States, despite the dominance of genetically modified varieties over the last decade.
Jack Heinemann, a professor at the University of Canterbury in New Zealand, did a pioneering 2013 study comparing trans-Atlantic yield trends, using United Nations data. Western Europe, he said, “hasn’t been penalized in any way for not making genetic engineering one of its biotechnology choices.”
Biotech executives suggested making narrower comparisons. Dr. Fraley of Monsanto highlighted data comparing yield growth in Nebraska and France, while an official at Bayer suggested Ohio and France. These comparisons can be favorable to the industry, while comparing other individual American states can be unfavorable.
Michael Owen, a weed scientist at Iowa State University, said that while the industry had long said G.M.O.s would “save the world,” they still “haven’t found the mythical yield gene.”
Few New Markets
Battered by falling crop prices and consumer resistance that has made it hard to win over new markets, the agrochemical industry has been swept by buyouts. Bayer recently announced a deal to acquire Monsanto. And the state-owned China National Chemical Corporation has received American regulatory approval to acquire Syngenta, though Syngenta later warned the takeover could be delayed by scrutiny from European authorities.
The deals are aimed at creating giants even more adept at selling both seeds and chemicals. Already, a new generation of seeds is coming to market or in development. And they have grand titles. There is the Bayer Balance GT Soybean Performance System. Monsanto’s Genuity SmartStax RIB Complete corn. Dow’s PhytoGen with Enlist and WideStrike 3 Insect Protection.
In industry jargon, they are “stacked” with many different genetically modified traits. And there are more to come. Monsanto has said that the corn seed of 2025 will have 14 traits and allow farmers to spray five different kinds of herbicide.
Newer genetically modified crops claim to do many things, such as protecting against crop diseases and making food more nutritious. Some may be effective, some not. To the industry, shifting crucial crops like corn, soybeans, cotton and rapeseed almost entirely to genetically modified varieties in many parts of the world fulfills a genuine need. To critics, it is a marketing opportunity.
“G.M.O. acceptance is exceptionally low in Europe,” said Liam Condon, the head of Bayer’s crop science division, in an interview the day the Monsanto deal was announced. He added: “But there are many geographies around the world where the need is much higher and where G.M.O. is accepted. We will go where the market and the customers demand our technology.”
Continue reading the main story